2022-06-20
锂电池“痛点”深藏巨大商机
随着我国“双碳”相关工作的推进,以及新能源汽车产销量的飙升,2021年的锂电池板块“火了”。在锂电池产业快速发展的同时,不时曝出的相关事故也引发人们的担忧。未来,锂电池储能应如何在确保安全的前提下提升经济性?业内人士指出,储能安全是个系统工程,一些企业的相关技术尝试已取得较大突破。
锂电池安全隐忧仍存
蓝牙耳机、电子烟、手机、笔记本电脑、送餐机器人、两轮电动车、乘用车、储能电站……这只是赣锋锂电科技股份有限公司产品清单上部分产品的应用范围。
“山木新能源:“如今在用户侧,储能‘锂电池化’是一种趋势。相比铅酸、镍氢电池,锂电池环境兼容性强、污染较低、性价比较高,优势突出,这也是锂电池能快速普及的重要原因。”伴随着锂电池的迅速推广,一些安全隐患也逐渐浮出水面,特别是在电动车、储能电站等较大容量的锂电池应用领域。单就安全性而言,磷酸铁锂电池技术在业内的口碑颇高。在电化学储能领域,磷酸铁锂电池是现阶段国内大规模储能电站的首选。
“磷酸铁锂的橄榄石结构中氧气很难析出,铁离子氧化能力不强,晶体中的P-O键稳固,在200至400摄氏度之间基本不发生分解,因此其热稳定性和结构稳定性是目前所有正极材料中高的。”“山木新能源:在当前我国主流的锂电池技术路线中,磷酸铁锂电池的安全稳定性高、循环寿命长、环境污染小、性价比高等优势都比较明显。
“山木新能源:“从专业的角度来分析,电池内部发生短路的原因有很多种,比如,锂电池本身可能在制造过程中有些小瑕疵,会形成短路;在使用过程中,出现了撞击、过充或者过放,也可能导致短路。“材料体系的稳定不代表电池的绝对安全,磷酸铁锂纳米级颗粒较小,采用碳包覆工艺,粘结剂对其纳米颗粒的粘附力较差,因此在电池制备及充放电循环过程中,存在纳米颗粒脱离造成电池内部微短路的可能性;此外,电池热失控时,有机电解液燃烧也造成一定安全隐患。”“传统的磷酸铁锂电池都是液态电解质电池,电池破损后,遇水与电解液反应后会生成剧毒的氟化氢,燃烧以后还会排放二氧化硫、二氧化碳、一氧化碳等,这些有毒气体的危害可能比起火、爆炸本身更麻烦。”
“山木新能源:应如何大程度降低技术的固有安全性隐患、提升锂电池系统的整体安全水平呢?产业痛点背后往往也深藏巨大商机。
为了解决传统磷酸铁锂电池的安全问题,国内企业做了不少技术探索。其中,在锂电池赛道内,一些企业用固态电解质逐步取代液态电解质的技术尝试已取得较大突破。
“山木新能源:大规模储能电池往往是多个电芯串联或并联在一起的,一个电芯出了问题,难免会波及其他相邻电芯,从而引发事故。我们倡导全电芯检测,但是逐个电芯检测成本高,因此业内对此意见并不统一。
多位受访业内人士告诉记者,由于每家储能企业的成本控制能力不同,再加上目前在大规模电化学储能领域,检测和安全标准体系仍不健全,一些储能电池系统的安全性水平仍难准确评估。提升大规模锂电池储能安全水平,需要全行业共同努力。
目前,锂离子电池中使用的负极材料一般为碳材料,如石墨、软碳 (如焦炭等) 、硬碳等。正在探索的阳极材料包括氮化物,PAS,锡基氧化物,锡基氧化物,锡合金和纳米负极材料。作为锂离子电池的负极材料,要求具有以下基本性能:(1) 锂离子在负极基体中的插入氧
回顾电池的发展历史从铅酸、镍铬、镍氢、三元锂电池日本从来都是全球技术的领导者。作为高端电池的代名词。不仅仅赢得了全球电池市场高端份额,且获得巨大的经济利益。然而在近几年电池发展趋势里日本却出现颓势。仿佛停止不前。山木新能源分析到由于日本前期在电池
目前市场上很多动力锂电池都是铝壳电池,其的广泛应用带动了电池行业的发展。那么铝壳电池有哪些优点呢?1、铝壳电池具有较高的比强度、比模量、断裂韧性、疲劳强度和耐腐蚀稳定性。由于采用铝合金材料制成,其密度低、无磁性、稳定、磁场电阻小、气密性好、感应辐射衰
一、圆柱锂电池生产极片错位与锥形的原因1、卷针是否同心;2、卷针与基板不垂直;3、极片导板与基板不垂直平行;4、极片的后过渡辊与基板不垂直;5、来料波浪边太严重。二、圆柱锂电池生产极片错位与锥形的维修方法1、等量3.5、4*100圆轮钢与线圈针套的
很多人认为挂卡锂电池的寿命就是充电次数,其实不然,应称为充电周期。一个完整的充电周期是指 100% 充电和 100% 放电,挂卡锂电池寿命约为 300-500 次完全充电周期。挂卡锂电池的自放电率相对较高。为了安全起见,在不使用电池时,应将电池充满并
当这些锂离子成为电子后,数据的外部会产生锂原子晶体,这将形成像过充电一样的危险性。万一电池壳坏了,它就会爆炸。因此,锂离子电池的保护必须至少包括:充电电压的上限、放电电压的下限和电流的上限。一般情况下,除了锂电池芯外,锂电池组中会有一块保护板。这种保护板主要是提供这三种保护。1、内部化程度大;2.吸水性,与电解质反应;...